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Abstract. The elastic nonlinear behavior of rocks as evidenced by deviations from
Hooke’s law in stress-strain measurements, and attributable to the presence of mechanical
defects (compliant features such as cracks, microfractures, grain joints), is a well-
established observation. The purpose of this paper is to make the connection between the
elastic nonlinearity and stress-induced effects on waves, in this case uniaxial-stress-induced

transverse isotropy. The linear and nonlinear elastic coefficients constitute the most
condensed manner in which to characterize the elastic behavior of the rock. We present
both the second- and the third-order nonlinear elastic constants obtained from
experimental data on rock samples assumed homogeneous and isotropic when unstressed.
As is normally the case, the third-order (nonlinear) constants are found to be much larger
than the second-order (linear) elastic constants. Contrary to results from intact
homogeneous solids (materials without mechanical defects), rocks exhibit weak to strong
nonlinearity and always in the same manner (i.e., an increase of the moduli with pressure).
As a consequence the stress-induced P wave anisotropy and S wave birefringence can be
large. The stress-induced P wave anisotropy appears to be much larger than the S wave
birefringence. The fast direction is parallel to the stress direction, and the anisotropy goes
as sin” 6, 6 being the angle between the propagation direction and the stress direction.
Experiments on rocks indicate that at low applied stresses, the proportionality of the stress
and the induced § birefringence and P anisotropy predicted by theory is well

corroborated.

Introduction

The nonlinear elastic response of rock is a well-established,
now classical observation. For example, one well-known man-
ifestation of elastic nonlinearity is the dependence of the elas-
tic properties or rocks on applied stress as demonstrated by
countless laboratory experiments [e.g., Birch, 1966]. Another
well-known observation in both the laboratory and in the Earth
is the anisotropic nature of rock and of the stress fields [e.g.,
Zoback, 1992]. In this work we intend to show how elastic
nonlinearity and elastic anisotropy are connected and how the
nonlinear response varies with anisotropy, and vice versa.

Nonlinear elasticity in rock is due to the presence of com-
pliant mechanical defects (cracks, microfractures, grain joints)
[e.g., Walsh, 1965; Jaeger and Cook, 1979; Bourbié et al., 1987].
Many recent experiments in rocks show strong nonlinear elas-
tic wave response, much larger than that of gases, liquids, or
most other solids [e.g., Meegan et al., 1993; Johnson et al., 1993;
Johnson and McCall, 1994]; however, relatively few measure-
ments exist on rocks of the complete set of higher-order elastic
constants that describe elastic nonlinear behavior [Bakulin and
Protosenya, 1982; Nazarov et al., 1988]. In this paper we will
describe measurements of nonlinear constants in rocks from
wave propagation experiments and calculation of these con-
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stants from data available in the literature. We will then show
the connection between these nonlinear parameters and fre-
quently measured experimental parameters such as the stress-
induced P wave anisotropy, the S wave birefringence, and the
relative variations of P and S wave velocity ratio y = V,/V.
Shear wave splitting, quantified by the S birefringence, has
long been recognized as diagnostic of seismic anisotropy in the
Earth’s crust but also provides information regarding the in
situ crack and stress structure of rock masses, leading to po-
tential industrial applications (see review by Crampin and
Lovell [1991]). The ratio -y contains information on the litho-
logic type and the physical state of rocks [e.g., Pickett, 1963].

We shall first review the classical theory of wave propagation
in nonlinear elastic media. We then deduce the expressions of
the P wave anisotropy and the S wave birefringence for trans-
verse isotropy induced by uniaxial stress. This will be followed
by the illustration of the effect of variations of vy as a function
of the applied stress and the elastic constants. Finally, we shall
apply the analysis to experimental data on rocks.

Fundamentals of Nonlinear Elastodynamics

The detailed development of the elastic nonlinear theory
can be found in numerous textbooks [e.g., Truesdell, 1965;
Green, 1973]. Here we summarize the general equations. (We
note that there is mounting evidence indicating that the clas-
sical approach cannot necessarily be applied directly to rocks,
especially at lower pressures [e.g., McCall and Guyer, 1994;
Guyer et al., 1995; P. A. Johnson et al., Resonance and elastic
nonlinear phenomena in rock, submitted to Journal of Geo-
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physical Research, 1995]. It may well be that the widely ob-
served discrete memory effect in static tests must be accounted
for in wave propagation as well.)

The equation of motion is

pli; = do;/dx), (1)

where p, o, and i designate the density, the stress tensor, and
the particle acceleration, respectively. Einstein’s summation
convention on repeated indices is assumed. The stress tensor is
given by

OE
707 9(oulox;) (2)

where E designates the elastic strain energy, which, developed
to the third order in strain & in a general elastic medium, is
[Brugger, 1964]

E = %C{/klstjakl + % CiikimnE i€ KE mn> (3)
where C,;;, and C,;;,,,,,, designate the components of the sec-
ond-order elastic (SOE) tensor and the third-order elastic
(TOE) tensor, respectively. The complete set of SOE and TOE
constants is the most condensed manner in which to summa-
rize the linear and nonlinear elastic properties of a solid. The
order of an elastic constant corresponds to the power of the
corresponding strain ¢ in the development of the elastic strain
energy E in (3). The SOE (or TOE) tensor exhibits the internal
symmetries C; = Cjipy = Cype = Crpj (08 Cijpipmn =
Cjiklmn = Cijl/cmn = Cijklnm = Cklijmn = Cmnk/ij) and is
characterized by 21 (or 56) independent components in the
lowest material symmetry (triclinic) and by 2 (or 3) in the
highest symmetry (isotropic). The mechanical stability of the
medium imposes that medium requires energy to undergo elas-
tic deformation, which implies that each of the two terms in the
right-hand side of (3) must be positive for any state of strain.
This leads to six well-known constraints on the SOE constants
[e.g., Helbig, 1994]. We are not aware of similar constraints
published for the TOE constants.

In (3) the components of the Lagrangian strain tensor ¢ are
given by

au,» aul auk auk

ox; | ox;  9x; 9x;

2g; = (4)
By inserting (2) into (1) and using (3) and (4), one obtains the
general nonlinear elastodynamic equation
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pli; = dx.0x, [Cijkl + (Cijk[mn + C,j,'lmSkn + Cilnmajk
J

aum
+ Cik/majn) gx—:l Uy, (5)

where & is the Kronecker symbol. In the case of small displace-
ments the third term of the right-hand side of (4) can be
neglected, and one finds the classical linear relation between
the strain and displacement. However, when dealing with finite
deformation, (4) is nonlinear. This nonlinearity is of a “geo-
metrical” or “kinematic” type and is related to the difference
between the Lagrangian and Eulerian descriptions of motion
[Zarembo and Krasil’nikov, 1971]. The nonlinearity remains
even if the TOE constants C,,, in (3) vanish, thus explaining
the presence of the nonlinear term (C,;;,,, 8z, + Cifmix +
Cx1m9;,) in the general nonlinear elastodynamic equation (5).
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The other type of elastic nonlinearity is “physical” nonlinear-
ity. Physical nonlinearity is contained in the TOE coefficients
Cijrimn (equations (3) and (5)) and accounts for the fact that
stress is no longer a linear function of strain even for moderate
to small strain levels (i.e., even if the strain-displacement re-
lation (4) becomes linear). This is the case in materials exhib-
iting strong nonlinearity, such as rock.
In the particular case where the medium is isotropic, the
elastic energy E in (3) simplifies to [Murnaghan, 1951]
A+ 2p I +2m

E==5"—L-2ul+—

B —2mI I, +nl,  (6)

where A = C,, and p = Cg, are the SOE constants (or Lamé
?arameters),l = %an, m = %(C”1 — Cyyp) and n =
5(Ci11 = 3Cyy; + 2C,y3) are the TOE constants (Mur-
naghan coefficients), I, = ¢;, I, = %(Siisjj — g;€;), and
I; = det(g,;) [e.g., Zarembo and Krasil’nikov, 1971].

Nonlinear Acoustics and Acoustoelasticity

Two cases are generally considered in the literature on wave
propagation in nonlinear elastic media. The first case is that of
the nonlinear acoustics community [e.g., Zarembo and
Krasil'nikov, 1971; Hamilton, 1986], in which waves are consid-
ered finite in amplitude and velocities depend on the strain
level. As a consequence, an initially sinusoidal waveform will
not maintain its shape during propagation in the absence of
large dissipation because the wave crests overtake the wave
troughs, leading ultimately to a shock wave [e.g., Gol'dberg,
1957]. For a P wave propagating in a one-dimensional (1-D)
isotropic medium,

Vi(e) = V(e = 0)(1 — Be), (7)

where V(e = 0) and Vp(e) denote the linear and the non-
linear velocities, respectively. The nonlinear acoustic coeffi-
cient B is given by

_3 [+ 2m g
B*§+/\+2pf (®)

Note that the magnitude of the nonlinear response is quanti-
fied not by the absolute value of the TOE constants but by the
ratio between the TOE and the SOE constants.

A second nonlinear elastic case corresponds to a small wave
perturbation superimposed on a static predeformation due to
the presence of a static prestress. This is the field of acous-
toelasticity [e.g., Pao et al., 1984], which is the acoustical analog
of photoelasticity in optics. Thurston and Brugger [1964] have
analyzed two such cases, namely, uniaxially and hydrostatically
prestressed anisotropic media. In the case of uniaxial prestress
the stress derivative of the wave modulus is given by

a<p0W2>> .
—_— =—(n-m)*—2wF — H, 9
(M) - —aem ©)
where W is the “natural” velocity (i.e., the length of the
“acoustical path” in the unstressed state divided by the wave
travel time in the stressed state), p, is the density in the un-
stressed state, and n and m are the unit vectors in the direc-
tions of wave propagation in the unstressed state and of the
uniaxial stress, respectively.

In the case of a uniaxial prestress, the quantities w, F, and
H are given by
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w = Cf}uﬂ DD s (10a)
F = Sizhmimjpkph (10b)
H= S;klckllrxtjm imjn lnA'pf‘pqa (]00)

where C* and S” are the SOE isentropic stiffness and isother-
mal compliance tensors, respectively, of the unstressed me-
dium and p; are the components of the unit polarization vector
of the wave in the unstressed state.

In the case of an applied hydrostatic prestress, the term
(n - m)® in (9) is replaced by 1. In this case, w, F, and H are
given by

w = Cpnipp, (11a)
F = S;‘l‘.\pl‘]’x? (11b)
H = S;;lI/CIITV)I‘l[.S’n/)n PP s- ( 11 C)

Here the symmetry of the stressed medium is entirely deter-
mined by the symmetry of the SOE and the TOE tensors,
which have the same symmetry as the unstressed medium. As
a consequence, the elastic symmetry is unchanged under hy-
drostatic stress. Note that the tensor C* can be identified with
the fourth-rank tensor C in (3) and that w is the wave modulus
in the unstressed state. Also, as was noted by Green [1973], for
practical applications a major advantage of (9) is that all the
physical parameters involved are evaluated in the unstressed
state (o = 0) and as a consequence do not involve stress-
induced changes in the symmetry of the medium. Note also
that in materials having C,;,,,,,,, values much larger than C;;,,
values, the physical nonlinear term A will be much more im-
portant than the geometrical nonlinear term 2wF in (9) to
(11). This is the case in strongly nonlinear materials such as
rocks, as will be illustrated below.

In the case of the most general state of prestress (triclinic),
the stress tensor o can be decomposed in three eigenstresses
o = (e"(mD), g™ (m), "M, where the o (m)
(i = I, 11, III) are uniaxial mutually perpendicular stresses in
directions of unit vectors m‘”. The first-order Taylor expan-
sion of the stressed modulus M (o) around zero stress is

oM

M(o)=M(c=0) + <m> o + (W) 00'(”)
o=0 o=

oM )
+ (ﬁ_ﬁ O_(IH)
(0] >
do o=0

where M(o = 0) is the wave modulus in the unstressed
medium and (IM/3c®),,_, (i = I, 11, III) are given by (9) and
(10). In theory, (12) can be applied if the stress is not too large,
that is to say, as long as |[M (o) — M(o = 0)| << |M (o = 0)].
This is fulfilled if |9M/do|o| << |[M(o = 0)|. From (9) and
(10) this can be reduced to the condition

(12)

O-E'Cék/nm < (C,"ljk/)z. ( 13)

We assume in (10), (11), and (13), as in the rest of the paper,
that the isothermal stiffness tensor C” (or compliance tensor
S™) does not differ much from the isentropic stiffness tensor
C* (or compliance tensor S”). Their difference is of the same
order as or smaller than the combined deviations due to errors
of measurements of these constants and the variability of the
elastic properties in the material [Hearmon, 1961]. Condition
(13) summarizes the domain of validity of (12). Note that (12)
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Figure 1. Geometrical interpretation of equation (12) and
representation in the eigenstress axes (I, II, III) of the isove-
locity/isomodulus plane 7 perpendicular to the gradient vector
A and defined by the loci of the extremity of the stress vector =.

is a very general equation. The equation gives the stress de-
pendence of the modulus of an arbitrary wave (¢P, ¢S1 or
qS2) propagating in any direction of a homogeneous, aniso-
tropic medium of arbitrary symmetry, submitted to an arbitrary
(but uniform) static prestress.

For fixed eigendirections of stress m'” (i = I, I, III) and for
a given wave and propagation direction (i.e., n and p fixed in
(9) and (10)), (12) has a simple geometrical interpretation.
This is illustrated in Figure 1. In the coordinate system (I, II, IIT)
aligned with the vectors m” (i = 1, II, III), the stress o can be
represented by the vector ¥ of components (o?, ¢!V, gD,
If one introduces the gradient vector A of components (dM/do,
aM/ao"D, aM/3a™V), the quantity (aM/do ), _,0P +
(0M/3a™) _oa™ + (aM/3a ™), _, 0" is equal to the
scalar product X - A. Thus the states of stress that keep the
moduli (or the velocities) constant are represented by vectors
2. that have a constant projection 3., along A. The extremity of
the vectors X are contained in a plane 7 perpendicular to A.
We refer to this plane as an isovelocity or isomodulus stress
plane. In the particular case of an initially isotropic medium one
has aM/ac™® = aM/oa™ = 9M/ac™""P, which implies that the
isovelocity stress plane is normal to the direction (1, 1, 1).

We conclude with some symmetry considerations. The sym-
metry principles stated by Nur [1971] are contained in (9), (12),
(14), (15), and (16) and are direct consequences of a very
general principle outlined by P. Curie [e.g., Curie, 1894; Curie,
1955; Sirotine and Chaskolskaya, 1975] regarding the influence
of symmetry on physical phenomena. The principle states that
effects are at least as symmetric as their causes. The corollary
is that if the effects lack a symmetry element, so do their
causes. In other words, the symmetry group of the causes (i.e.,
the unstressed medium and the stress field in our case) is a
subgroup of the symmetry group of the effects (i.e., the stressed
medium in our case). For example, the symmetry group of an
initially isotropic medium under an arbitrary (but uniform)
stress field is orthorhombic, and thus such a stressed medium
is of at least the same symmetry. In other words, orthorhombic
symmetry is the lowest level of symmetry that can be exhibited
by an initially isotropic medium uniformly submitted to an
arbitrary state of stress. Another example is an initially orthor-
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hombic medium that is uniaxially stressed. Such a medium is
orthorhombic, monoclinic, or triclinic if the stress is perpen-
dicular to a symmetry plane, contained in a symmetry plane, or
out of any of the three symmetry planes, respectively. Similar
results can be easily deduced using this principle in the case of
media and/or prestress belonging to other symmetry groups.

Stress-Induced Anisotropy in Initially
Isotropic Media

In the particular case of an initially isotropic medium and
vertical uniaxial prestress, the resulting symmetry is transverse
isotropy with a vertical symmetry axis. The parameters w, F,
and H in (9) become the following: for the P wave,

wp=C; =N+ 2pu, (14a)
Fp=58,c*+ Sp.5% (14b)
Hp=C(S1c? + 858D + Ca(S1s? + 28 1,¢); (14¢)

for the SV-wave (i.e., the § wave polarized in the plane defined
by the direction of propagation and the direction of the applied
uniaxial stress),

wey = Ces = 1, (15a)
Foy=S8pus® + 8xc?, (15b)
4Hg = Cul(Sn + 8 + Cia(Sia — ) = 2C 1581 (15C)

and for the SH-wave (i.e., the S-wave polarized normal to the
plane defined by the direction of propagation and the direction
of the applied uniaxial stress),

Wsp = Coo = I, (16a)
si = S, (16b)

dH g = C i1 (S1ic® + Spps® + 1) + ClS11(2 — 3¢?)
+ Sl + 5] = 2C 155(S1is” + S1c?). (16¢)

In (14), (15), and (16) we adopted Voigt’s contracted index
notation convention for the components of all the elastic ten-
sors [e.g., Brugger, 1964]. The quantities c> = (n * m)? = cos?
6 and s> = sin® 9 are directional parameters, where 0 is the
angle between the direction of propagation and the direction
of the uniaxial stress. Note that the F terms in (14) and (15)
have elliptical dependence on 6, the w terms are independent
of 6, and H is independent of 6 in (15) and has elliptical
dependence in (14). The compliance coefficients are given by

S 1 S _ C” + CIZ 17)
0= Co (C - Cp)(C +2C)° (
where Cj, = €y — 2Cgq and Sy, = Sy — S46/2.

In the case where the direction of propagation is either
perpendicular or parallel to the direction of the applied stress,
the expressions become simpler [Hughes and Kelly, 1953]. For
example, in the case of a uniaxial stress o in the direction of
wave propagation, equations (9), (14), (15), and (16) become

A+ 2p—

) At
pVp = 20+ A + (4m +4Xx +10p) |,

3K
(18a)
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An
2
pVs=n ~3K (m+ M+4)\+4M> (18b)

where K = A + = 5 is the unperturbed bulk modulus. When
the direction of propagatlon is perpendicular to the direction
of the uniaxial stress o, the fast shear wave S, and the slow
shear wave S, are polarized parallel and perpendicular to the
stress direction, respectively. These velocities are given by

V3 =+ 2u 21 A +A+2 19a
pPVpL 3K (m [.L) 5 ( )
pl/z =K - m+“——+)\+2/.1, 19b
St 3K l ( )
Vz = 2\ 1
pVs, =K 3K m 2 n . ( 9C)

Note that wave propagation in prestressed media is centrosym-
metric because it involves only the even rank SOE and TOE
tensors. Thus uniaxially stress-induced transverse isotropy im-
plies a symmetry plane perpendicular to the direction of the
uniaxial stress.

When hydrostatic stress p is exerted on the medium, the
state of stress is equivalent to a state of stress with three
uniaxial stresses of the same magnitude but oriented in three
orthogonal directions. We can take one of these directions
collinear to the direction of propagation and perpendicular to
the two remaining directions of uniaxial stress. Thus using (18)
and (19), the shear and the compressional velocities under
hydrostatic pressure p are given by

pVi=A+2u — K (6l +4m + 7)1+ 10u), (20a)

pVi= = 2 (3m = tn + 30 + 6p). (20b)

Because the state of stress is isotropic, the initially isotropic
medium remains isotropic and no directional dependence is
observed in (20). In the case of fluids one has p = 0, ] =
— '5)\(5 + B/A),m = —A andn = 0, where 4 and B are the
first two coefficients of the Taylor expansion of the equation of
state of the medium [e.g., Beyer, 1972; Kostek et al., 1993]. In
this case the second equation of (20) vanishes, and the TOE
nonlinearity is defined by only one coefficient, namely, / or
B/A.

Relation Between Nonlinearity and Elastic
Parameters

In this section we consider only waves in initially isotropic
media. We restrict our discussion to hydrostatic prestress and
to transverse isotropy induced by uniaxial stress. Our purpose
here is to express the variations of elastic parameters such as
the § wave birefringence and P wave anisotropy induced by an
applied uniaxial stress. The only directional parameter for
wave propagation is the angle 6 between the direction of prop-
agation and the direction of the uniaxial stress.

The § wave birefringence Bg(6) is usually defined as

Vs (6) = V(6)

VS|(0) ’ (21)

By(6) =
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where Vg and Vg, are the velocities of the fastest and the
slowest S wave, respectively. These velocities correspond in
our case to the SV and the SH wave, respectively [e.g., Leary
et al., 1990]. Note that all the velocities depend on the angle of
propagation 6, and as a consequence, B does as well. If the
magnitude of the prestress is not too large, that is to say when
condition (13) is fulfilled, using (9), (15), and (16), equation
(21) gives

Bg(0) =~ — % [2u(Fsy — Fgy) + (Hgy — Hsy)]

- ﬂfr:# sin? 0 = —oby sin® 0, (22)
where wg,, = wg, = u, and where by = (4 + n)/8u? is
an elastic parameter that we shall call the stress-induced S
birefringence coefficient. In this particular case the condition
(13) leads to |o| << p?/|n|, which is the condition of validity
of (22). Note that the maximum birefringence occurs when 6 =
90°, that is to say, when both the § waves propagate in a
direction perpendicular to the direction of the uniaxial stress.
Note also that the birefringence is directly proportional to the
stress o and that the directional dependence of the S birefrin-
gence is simply contained in the function sin® .

In a very similar manner one can define P wave anisotropy
Ap(0) by

Ap(8) = (23)

where V) and V,(60) are the P wave velocities in the fastest
direction, i.e., along the stress direction and in an arbitrary
direction 6, respectively. As for B, the parameter A , depends
on the angle of propagation 6. If the magnitude of the prestress
is not too large, that is to say, when condition (13) is fulfilled,
using (9) and (14), equation (23) gives

o

Ap(0) = — 2N 2m) (1

—cos> 0+ 2(A +2pu)

- (Fp(6=0°) — Fp(6)) + (Hp(6 =0°) — HP(O))]

2+ 5+ 2m

102
wZM(A+2u) sin” 6.

=—-0 (24)
Here we have used the relationw, = A + 2pu (see (14)). Note
that condition (13) for this particular case leads to |o| <<
r(JA|l + |u])/|m|, which is the condition of validity of (24).

This last equation can thus be written,

2+ 5p+ 2m

A6 = 0 T 2w

sin? § = —oap sin® 6, (25)
where ap = (2A + 5u + 2m)/[2p(A + 2p)] is an elastic
parameter that we shall call the stress-induced P wave anisot-
ropy coefficient. As for § birefringence, note that the maximum
P velocity deviation is between the propagation directions par-
allel and perpendicular to the direction of uniaxial stress, that
the P wave anisotropy is directly proportional to the stress o,
and that the directional dependence is simply described by the
function sin® 6.

We can compute the variation of the parameter y(p) =
Vp(p)/Vs(p) induced by the hydrostatic pressure p, because
such data exist. We simplify y(p) in the following manner to
compute the variation. If the magnitude of the hydrostatic
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prestress is not too large, that is, when condition (13) is veri-
fied, one has

vp) 1o
y(p =0) 1-1Lop

- %(g - 7))1’7 (26)

where

6L+ 4m + 7N+ 10u
a 3K(A+2p) ’

3m —3n+3\+6p
3Kp ’

n=

and where {p << 1 and np << 1 (due to the condition
prescribed in (13)). Thus (26) becomes

Ay _y(p) —v(p=0)

y  vp=0 7

~2(n = p.

Note that the last term describes a linear relationship between
Avy/y and p.

Experimental Data

Our aim here is not to present an exhaustive analysis of the
experimental data available from the literature but to illustrate
the relevance of the above analysis. We shall focus on data
from rocks that can be considered as initially isotropic without
applied stress. Zamora [1990] published data for “natural” and
“thermally cracked” Fontainebleau sandstone F32 (porosity
¢ = 8.9%), both dry and water saturated, and dry marble D82
(¢ = 0.8%). Nur and Simmons [1969] published data for dry
Barre granite (¢ = 0.6%). The influence of uniaxial stress on
anisotropy was studied in both papers. Zamora considered
wave propagation in two directions perpendicular to the direc-
tion of stress, whereas Nur and Simmons studied propagation
in the entire plane containing the direction of stress. Data from
Lucet [1989] using water-saturated Brauvilliers limestone (¢ =
30.8%) under confining pressure will also be considered here.

One manner in which to check the validity and implications
of the cubic development of the strain energy E in (3) is to plot
the relative variations [V2(o) — Va(o = 0)]/[Vz(o = 0)] of
the velocities as functions of the applied stress o. This is done
in Figure 2 for P waves in Fontainebleau sandstone. We can
see that the proportionality between the relative velocity vari-
ations and the stress described by (19), plotted as solid lines in
Figure 2, holds as long as the stress level is not too high. For
higher pressures, higher-order elastic constants are required to
describe the rock response. Following (18), (19), or (20), if
three such curves are available on the same rock sample, as is
the case with data from Zamora [1990] and Nur and Simmons
[1969], it is possible to invert all the TOE constants.

We have adopted the following procedure to separately in-
vert the SOE and TOE constants. Because the rocks are as-
sumed to be initially isotropic, we first compute the averages of
all the measured P wave and S wave unstressed moduli and
assume that they are equal to the SOE constants A + 2u and
u, respectively. Then for each experimental plot of the wave
modulus versus stress (as in Figure 2), we perform a linear
regression on the first three or four points typically and identify
the slope with [9(po,W?)/d0], -, in (9). Given the SOE con-
stants and using (14), (15), or (16), we then compute the
“corrected” slope [9(poW?)/00],_o + (m-m)> + 2wF,
which is a multilinear function H of the TOE constants (see (9)
and (10)). Finally, the three TOE constants are inverted by
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FONTAINEBLEAU SANDSTONE F32

0.7

PRESSURE DEPENDENCE OF P VELOCITY

@m«:«'mw

DRY

0.6

THERMALLY CRACKED DRY
THERMALLY CRACKED SAT.
SMALL STRESS LINEAR FIT

UNIAXIAL STRESS (MPa)

Figure 2. Relative variation [V3(0) — Vi(o = 0)]/[VA(a = 0)] of the P wave velocity as function of the
uniaxial stress o in “natural” and “thermally cracked” Fontainebleau sandstone, both dry and saturated.
Direction of propagation is perpendicular to the applied stress. Experimental data are from Zamora [1990].
Theoretical results from equation (19) are shown as solid lines.

multilinear regression on all the available slope data. The ac-
curacy of the velocities is better than 2% for Nur and Simmons
[1969], and is around 1% for P waves and 2% for S waves of
Zamora [1990]. Although no information about the accuracy of
the densities is available in the aforementioned references, we
assume it better than 1%. If this assumption is true, the esti-

Table 1.
Materials Without Mechanical Defects

mated accuracies of the SOE and TOE constants are better
than 5% and 15%, respectively.

The results showing SOE and TOE coefficients are listed in
Table 1. For comparison we have also listed the results for
“intact” homogeneous media, such as iron and Pyrex [Hughes
and Kelly, 1953]. The predicted and measured values of the

Second- and Third-Order Moduli and Predicted and Measured Parameters in Rocks Compared With Sample

Elastic Constants

Predicted and Measured Elastic Parameters

Second Order

Third Order (Murnaghan

(Usual Elastic) Coefficients) bg, GPa™! ap, GPa™'
P,
Materials kg/m®* K,GPa u,GPa [,GPa m,GPa n,GPa Pred. Meas. Pred. Meas. B
Hughes and Kelly [1953]

Armco iron 164 82 —348 -1,030 1,100 0.027 —0.032 -7.3
Pyrex 31.8 275 14 92 420 0.088 0.092 4.4
Nur and Simmons [1969]

Barre granite 2650 13.8 18.2 -3,371 —6,742  —6,600 —2.47 —-2.47 -9.67 —8.66 —441

Zamora [1990]

Dry F32 2414 15.3 11.7 —-97,800 —99,400 —84,900 772 =719 =274 —9,600
Fontainebleau
sandstone

Dry F32, thermally 2414 7.8 5.7 —74,000 —64,500 —34,900 -136 -134 =740 —13,200
cracked

Water-Saturated F32, 2503 30.2 17.5 -59,100 —38,200 —27,500 -9.4 -93 -35.8 —-2,430
thermally cracked

Dry D82 marble 2870 30 21.3 —40,300 —35,400 —20,300 -5.5 =55 -28.3 —1,900

Here, p is density; K and u are second-order bulk and shear moduli, respectively; /, m, and n are defined in text; b and a . are stress-induced
S wave birefringence and P wave anisotropy coefficients, respectively; and S is nonlinear acoustic coefficient (equation (8)). Pred., predicted;

Meas., measured.
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Figure 3. S wave birefringence B as function of the uniaxial stress in “natural” and “thermally cracked”
Fontainebleau sandstone, both dry and saturated. Direction of propagation is perpendicular to the stress.
Experimental data are from Zamora [1990]. Theoretical results from equation (22) (with 6 = 7/2) are shown

as solid line.

stress-induced S wave birefringence coefficient b (see (22))
and the stress-induced P wave anisotropy coefficient a, (see
(25)) are also shown. Finally, the predicted value of the non-
linear acoustic coefficient 8 from (8) is reported.

From (13) one can deduce the order of magnitude of the
maximum stress below which the proportionality between the
relative variation [M(o) — M(o = 0)]/M(c = 0) of the
wave modulus and the applied stress o, described by (12), is a
good approximation. Using (13) and the data of Table 1, this
leads to small limiting stresses of the order of a few megapas-
cals or fractions of a megapascal for strongly nonlinear mate-
rials such as thermally cracked, dry Fontainebleau sandstone.
From the experimental data plotted in Figures 2, 3 and 4 it
appears that the relations of proportionality are still reason-
able for much larger stress levels, suggesting limiting stresses at
least one order of magnitude larger than those predicted the-
oretically from (13).

Figure 3 shows the variation of the S birefringence as a
function of the applied uniaxial stress in Fontainebleau sand-
stone. The linear fit between the S birefringence and the stress,
described by (19) and plotted as solid lines in Figure 3, is
reasonable for stress levels that are not too high. The same
observations stand for the P anisotropy in Barre granite in
Figure 4.

In regard to the relative variations of y = V,/V with
hydrostatic pressure (Figure 5), the proportionality relation-
ship described by (27) and illustrated by the solid line in Figure
5 becomes rapidly unsatisfactory even for moderate pressures
(typically larger than 10 MPa) and for rocks exhibiting weak
nonlinearity as is the case for Brauvilliers limestone. In other
words, the domain of validity of this equation is restricted to a
much smaller pressure range (typically a factor of 10 or less)
than for (22) and (25). In spite of the noisiness of the data, we

believe that the decrease of y with pressure, although weak, is
consistent with crack closure [e.g., Wilkens et al., 1984].

From data of Nur and Simmons [1969] it is possible to
analyze the stress-induced velocity variations for intermediate
directions of propagation, 6. Figure 6 shows the dependence of
the stress derivative [8(po,W?)/d0],—, of the P, SV, and SH
wave moduli on 6 in Barre granite (see (9), (14), (15) and (16)).
The P wave exhibits a much larger variation of the stress
derivative of modulus with direction of propagation than does
the SH wave. The larger pressure dependence of the moduli/
velocities is observed in the direction parallel to the direction
of the stress, and vice versa. Note that in contrast, the stress
derivative of the SV wave modulus is practically independent
of the direction of propagation, which is confirmed by theory
(see Table 1 and equations (9) and (15), where the term H,,
independent of the direction of propagation, is orders of mag-
nitude larger than the other terms on the right-hand side of
(9)). In fact, this is a general result in strongly nonlinear iso-
tropic media such as rocks that can be considered as isotropic
in the unstressed condition; however, it is not true in weakly
nonlinear media, such as crystals, where “geometrical” nonlin-
earity and “physical” nonlinearity are of comparable order of
magnitude [Rasolofosaon and Yin, 1995].

A simple way to check the validity of (22) and (25) exhibiting
a simple angular dependence of the S-birefringence B¢(6)
and the P-anisotropy 4 »(0) in sin? 6, is to plot the normalized
values Bg(0)/Bs(0 = 90°) and A (0)/A4 (6 = 90°) of these
quantities as a function of the direction of propagation 6. This
is done in Figure 7 for Barre granite under uniaxial stress. The
experimental data are compared with the theoretical predic-
tion of sin® 6. The agreement between experiment and theory
is satisfactory for P wave anisotropy, but not so for the S
birefringence. There are at least two possible explanations for
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Figure 4. P wave anisotropy A4 p as function of the uniaxial stress in dry Barre granite. Experimental data are
from Nur and Simmons [1969]. Theoretical results from equation (25) (with 6 = 7/2) are shown as solid line.

this result. First, the stress-induced S birefringence is much
smaller than the stress-induced P anisotropy (see Table 1 and
Figure 6), which seems to be true for all rocks shown in Table
1. Second, the S velocities are practically much more difficult

to measure than P velocities [e.g., Bourbié et al., 1987]. Taken
together, these two explanations imply that the error bars for
the S wave in Figure 7 must be much larger than those for the
P wave.
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Figure 5. Relative variation Ay/y of y = V,/V as a function of the confining pressure in water-saturated
Brauvilliers limestone. Experimental data are from Lucer [1989]. Theoretical results from equation (27) are

shown as solid line.
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Figure 6. Dependence of the pressure derivatives of the P wave, the S wave, and the SH wave moduli on
the direction of propagation with respect to the direction of the applied uniaxial stress in dry Barre granite.
Experimental data are from Nur and Simmons [1969]. Theoretical results from equations (9), (14), (15), and
(16) are shown as solid lines.

Discussion applied stress, or, in other words, to the presence of nonlin-

A key point in our reasoning for the inversion of the TOE  earity in rocks. Thus a natural question arises. Because most
constants is that we attribute all the stress-induced anisotropy ~ rocks are anisotropic to some degree in a SOE sense, what is
to the pressure dependence of the velocities under anisotropic  the influence of the SOE anisotropy of the unstressed rock on

BARRE GRANITE (UNIAXIAL STRESS)

. P ANISOTROPY AND S WAVE BIREFRINGENCE

Normalized P anisotropy and S birefringence
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Figure 7. Dependence of the normalized P anisotropy (A,(0)/Ap(6 = w/2)) and S-birefringence

(Bs(0)/Bs(6 = m/2)) on the direction of propagation, 6, in dry Barre granite. Experimental data are from
Nur and Simmons [1969]. The in solid line is sin® .
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the determination of the TOE constants? In fact, the SOE
anisotropy has a relatively minor influence in the inversion
procedure of the TOE constants, primarily because the inver-
sion of these constants is practically decoupled from the inver-
sion of the SOE constants. The SOE inversion is based only on
the unstressed moduli measurements and consists in searching
for the “best isotropic medium” which approximates the un-
stressed rock. On the other hand, the TOE inversion is based
not on stress-induced anisotropy measurements but on mea-
surements of the stress-derivatives of the wave moduli (see
(9)). In the case of strongly nonlinear materials such as rock
(see comments after (11)), stress derivatives are clearly dom-
inated by the presence of the TOE constants in the H term of
(9), with the SOE constants playing a relatively minor role. In
fact, in the TOE inversion one should be more concerned
about the TOE anisotropy than about the SOE anisotropy
because the TOE seems always to be much larger than TOE in
rocks and their constituent minerals [Rasolofosaon and Yin,
1995]. An illustration of the relevancy of the proposed proce-
dure is the surprisingly good agreement between the directly
measured stress-induced S birefringence and P anisotropy co-
efficients, bg and ap, respectively, and the predicted values
deduced from the inverted SOE and TOE constants using (22)
and (25) (see Table 1). It is worth noting that the parameters
reported in Table 1 quantify the stress-induced effects per unit
of applied stress and not the global stress-induced effects them-
selves. This minimizes the bias induced the presence of SOE
anisotropy, which is by definition independent of the stress
level.

In regard to the anisotropy induced by an arbitrary state of
stress in an initially isotropic medium (see (12)), there are few
examples of such data in the literature. Nur and Simmons
[1969] studied P wave propagation in Barre granite under
various states of biaxial stress. Their Figure 10 showing P wave
isovelocity diagrams is identical to traces of the plane 7 in the
coordinate plane (I, II) for different values of the projection =,
(see Figure 1). This observation provides an approximate con-
firmation of the theory. Note than in the case of an initially
isotropic medium the gradient vector is collinear to the direc-
tion (1, 1, 1). As a consequence, the isovelocity lines in the
plane (I, II) should be straight lines perpendicular to the first
bisector of the axes I and II in Figure 1. This prediction is
approximately corroborated by the data from Nur and Sim-
mons. Nevertheless, in detail their results show that the stress
derivative of the P velocity in the direction I is roughly 1.5
times larger than that in direction II, whereas the P velocities
in these directions are practically identical. This certainly im-
plies that Barre granite is more anisotropic with respect to the
TOE properties than with respect to SOE properties, which is
in agreement with the conclusions of Rasolofosaon and Yin
[1995].

It is clear from Table 1 that the TOE constants in rock are
2 or 3 orders of magnitude larger than the SOE constants and
differ in sign. The magnitude of the nonlinear response, quan-
tified by B in (8), is orders of magnitude larger in the rock
samples than in the “intact” materials iron and Pyrex. It is also
clear that this ratio increases by 1 order of magnitude when dry
Fontainebleau sandstone is thermally cracked, whereas the
velocities, or the square root of the SOE constants, increase by
less than a factor of 2. This was also observed by Zinov’yeva et
al. [1989] in siltstone. It is not surprising that the thermal
cracking of the sample increases the pressure dependence (see
Figure 2). On the other hand, the presence of a saturating
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liquid (water) in the cracks reduces the contrast between the
matrix and the crack properties, which has the same effect as
reducing the crack density. As a consequence, the pressure
dependence is strongly reduced, at least for the P waves.

As is shown in Table 1, it is clear that “physical” nonlinearity
strongly dominates over “geometrical” nonlinearity in rock,
whereas they play a comparable role in iron and Pyrex. Similar
results in anisotropic rocks compared to crystals and liquids are
reported by Rasolofosaon and Yin [1995]. We and other re-
searchers have measured large values of $ in granite, sand-
stones, and limestones [e.g., Bakulin and Protosenya, 1982;
Meegan et al., 1993; Johnson et al., 1993].

All the TOE constants are negative in the rocks measured,
but this appears to be fortuitous [e.g., Bakulin and Protosenya,
1982; Nazarov et al., 1988; Rasolofosaon and Yin, 1995]. There-
fore inspection of (18), (19), and (20) implies that in general,
rock velocities increase with pressure. Numerous observations
in the literature support this well-known fact. On the other
hand, velocity may decrease with pressure in some materials,
for example, Pyrex.

The relationship is clear between the “amount” of nonlin-
earity in the rock, quantified, for example, by the magnitude of
the nonlinear coefficient 8 in Table 1, and the “intensity” of
the stress-induced anisotropy, quantified by the S wave bire-
fringence or P wave anisotropy coefficients b4 and a p, respec-
tively. In “intact” homogeneous media the coefficients b ¢ and
ap do not exceed 0.1 GPa™', and B remains small in absolute
value and can be either positive or negative. In rocks these
coefficients are all negative and are larger by 1-4 orders of
magnitude, meaning that nonlinear elasticity and stress-
induced § birefringence and P anisotropy are much larger in
rocks than in “intact” homogeneous materials. Furthermore,
the effect on rock is always in the same manner. For example,
in the presence of uniaxial stress and for wave propagation in
a direction perpendicular to the direction of stress, the fast
shear wave §; and the slow shear wave S, are always polarized
parallel and perpendicular to the direction of the applied
stress, respectively. Notice that it is exactly the opposite in the
case of iron and Pyrex. For P anisotropy in rocks under uniax-
ial pressure, the P wave propagating in the direction of the
applied stress always propagates faster than the one propagat-
ing perpendicular to that direction. Iron exhibits the same
behavior, whereas Pyrex exhibits the opposite. Note also that in
all rocks, the stress-induced P wave anisotropy is much larger
than the stress-induced S wave birefringence (see Figure 5 and
the values of a, and b in Table 1).

Conclusions

In this paper we have developed the relationship between
the nonlinear elastic parameters of rocks and the stress-
induced effects on waves propagating in rocks, in this case,
transverse isotropy induced by uniaxial stress. We demon-
strated first that the stress-induced P anisotropy and S bire-
fringence are proportional to the applied uniaxial stress o,
second that their directional dependence is governed by the
unique function sin® § ( being the angle between the direction
of propagation and the direction of the uniaxial stress), and
third that the constant of proportionality is a ratio of polyno-
mial functions of the linear and the nonlinear elastic constants.

We have also quantified the linear elastic constants, or Lamé
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parameters, and the nonlinear elastic constants, or Murnaghan
coefficients, for experimental data available in the literature.
We show that knowledge of the complete set of these elastic
constants allows one to predict the stress-induced variations of
the modulus of whatever wave type propagating in an arbitrary
direction in a rock submitted to an arbitrary (but uniform)
state of stress.

Contrary to “intact” homogeneous solids (iron, Pyrex), rocks
can exhibit strong nonlinearity (“physical” nonlinearity always
dominating “geometrical” nonlinearity) and always in the
same manner (i.e., an increase of the moduli with pressure). As
a consequence, the stress-induced P anisotropy and S birefrin-
gence can be large for an isotropic material subjected to un-
iaxial stress. From a quantitative point of view, for these types
of experiments the agreement between the theoretical predic-
tions and the experimental results is good.

We suggest that future experiments on nonlinear elasticity in
rocks be conducted in order (1) to check the generality of our
results, (2) to show unambiguously the detectability of the
nonlinear effects in rocks, and (3) to demonstrate the relevancy
of such properties for geophysical purposes. Different forms of
anisotropy from different states and initially anisotropic rocks
should be examined in the future as well [e.g., Yin and Rasolo-
fosaon, 1994; Rasolofosaon and Yin, 1995]. In order to keep the
paper a reasonable length, the relation between the nonlinear
parameters and specific micromechanical models [e.g., Pal-
ciauskas, 1992; Tutuncu and Sharma, 1994; Schwartz et al.,
1994] has not been described here, but will be studied in future
work. Finally, we are fully aware that hysteresis and discrete
memory effects can contribute dramatically to the nonlinear
response of a material as illustrated by McCall and Guyer
[1994] and Guyer et al. [1994, 1995]. In future work, these
effects must be accounted for.
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